Ôn thi tốt nghiệp THPT môn Toán - Lớp 12 - Đề thi thử tốt nghiệp THPT môn Toán năm 2025 của Thanh Hóa
{"save":1,"level":1,"time":"90","total":34,"point":5,"segment":[{"id":"4133","test_id":"497","question":"<p>Cho hàm s\u1ed1 f (x) có b\u1ea3ng bi\u1ebfn thiên nh\u01b0 sau:<br \/><span class=\"svgedit\"><svg height=\"120\" width=\"330\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>\\n<title><\/title>\\n<rect fill=\"#fff\" height=\"122\" id=\"canvas_background\" width=\"332\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>\\n<title><\/title>\\n<image height=\"115\" id=\"svg_1\" width=\"326\" x=\"-1\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAUYAAABzCAIAAABrdTwNAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4nO2deVhT1\/b3czIR5lkJAgoGkECgIGNAIKAMAcugCMLVlqq1ev050NrR6m29vbbV0ha1VnCsireAymgQKTLIKGBQZosooAxhDoSQ6bx\/nD65vnUo1JCJ\/fmH55wc9l7JyTdn77XXWhuCYRgFAACUBbSsDQAAAJIESBoAUCqwyJ\/+\/v6YmBihULho0SI0WsI6b2pqYrPZFApFXV1dsi0DAIAnT56gUKgTJ07Y2NigxJLmcrk9PT0aGhrq6uoSlzSbzWaz2RgMBkgaAJA4bDaby+UODw8jh39IGofDkUgkEom0d+9eHA4n8V77+\/v37NmzdOlSibcMAMxzjhw58vDhQw0NDeQQK34Bh8NpaGgYGRnh8XjJdqmpqTk5OWloaEgkEiXbMgAA0NTUfFazwD0GACgVQNIAgFIBJA0AKBVA0gCAUoH960sAc8\/g4GBFRUVPT4+qqqq\/v7+pqSkEQbI2ShqMj49XV1d3dHRAEESj0ZYuXYrBYGRtlGIDntKyZ2xsbO3atX19fcuXL2cwGG5ublVVVbI2ShpMTk7u2LGjrKzM3d393r17VCo1LS1N1kYpPEDSsqeqqqqqqur33393c3M7fPjwwMDAkSNHuFyurO2ac9rb2wsKChoaGt54440jR47AMPz999+LQyaUEiaT2dTUNKddyPXAm81mNzQ08Hg8U1NTCwsLZEgmEAja2tr6+voMDQ3JZDIWK9dvYSZ4eXn98MMPfn5+KBQKSYyTeACffGJjY5OYmPhsAJLSv\/G6ujosFmtrazt3XfwdPQiFwp6enrGxMSMjIwKB0NXVtXDhQkNDQ8la9vDhwy+++GJkZGRoaGhgYCAgIODTTz\/F4\/GHDh2CYZhCoTQ1NRUVFe3YsUPRVa2urv7ee++hUCiBQJCamqqnp7djxw4VFRVZ2zXnEAiE2NhYFAoFw\/CVK1fQaPS2bdt0dXVlbdccAsPwC9OZRSLR06dPBwcH1dTUTExM1NTUkPOjo6NPnz5FoVAmJiZaWloz6WLWYhCJRJmZmUNDQ1paWtu2baPRaDo6Og0NDUlJSTO\/GUKhcGRkRCAQPP8SBEEGBgYwDKempm7atMnLy2t4eDgxMTEpKamtrc3AwCA0NHTdunV4PF4kEuXm5paVldFotNm+C2nS2dmZlpYmFAqff2nBggWbNm1CPGEikei33367efPm5cuXPTw8pG6mzIBhuKmp6eTJk8eOHQsNDZW1OTJAIBCkp6efO3ducHCQy+UuW7Zs7969Li4uFRUVp06dMjEx0dfXHx0d3bx5s5mZ2V+2NmtJt7a2dnZ27tmzp7e3Ny4uLi4ubmpq6vfff3\/hV\/ZlsFisr776qre39\/mX8Hj80aNHBQKBqampt7c3CoUyMDA4cOAABEGHDh3y8vKKjo5GotDRaHRwcPD3338v55LW1NR0cHB44W+zpqam2LNdXl6em5t77tw5MzOzn376afPmzfPhQY1Codrb27\/77ruTJ0\/a2NicOXNm7dq12trasjZKYsAwLBQKxXdfKBRCEMTn88UX4HC4xsZGJpN58eJFHR2drKysXbt2RUVF7dixo6SkJCkpiUQioVCorq6u1NTUjz\/++C97nLWkLSws\/u\/\/\/g+DwVRUVIhEouDg4MWLF+\/Zs2dWsyAjI6OjR4++4oLR0dGJiQnxoYqKiq+v7+nTp8vKyv79739\/+umnyNd9YGBA\/tc8DAwMgoKCXn1NaWnpRx995O\/vn5qayuFwhoeH5yJ5Rg5pbm7eunWru7t7VlZWWlpaa2vrW2+9JWujJMnw8PC+ffuQwTMKhXr8+DEEQdnZ2cihvr5+YmLi48eP4+Pjkanr2rVrDQ0NY2Ji\/vWvfzEYDETPKBTK1NT0haPa55m1pIVCYWtrq7W1dVlZmYWFBZJfff\/+fTKZLEF1aWtr6+vrX758OTIyksvlZmdn5+XlZWZmJiYmHjp0qKenJzo6msPhZGRkfPPNN5LqVFa0tbXFxsY+efJEvHZ16NAhpXcUoVCoJ0+exMfH19TU3L59GzkTHx+v6J6RP6Gnp3fkyBGRSIQcnj9\/HovFxsXFIYcQBKmrq+NwuOnpafG\/ODk5ubm55efnf\/TRR1euXDExMUGhUEKhcHJyciY9zvrjy8\/PP3jwYFJS0p07dxwcHDAYTF1dXUlJiZ2d3WybegUQBIWFhWVnZyckJPD5fCsrq2+\/\/dbMzCwlJSU4OBjRtpmZ2a5duxYtWiTBfmUCkUhkMBjPjsyRu6j06Orqnj179tmHj8SdrDIHEa34kEAgYLFYTU3NZ6+xtLTMysoiEokGBgaPHj06efIkhUKh0Wiff\/55TEzMvn37iERiVVXVDH1Vs5a0paUlhUIpKSmJjY0tLS09fvw4BoOJi4uTeLSTqqpqdHR0REQEDMPiWaW2tnZ8fPzbb789NTWlqqqqHCFWWlpaFApF1lbIADU1NTKZLGsrZA+JRPLw8Dh8+DCHw+FyuatWrQoLC8PhcMuWLTt27Ninn36qq6vr6emZkJAwk9ZmLWl7e\/szZ86gUCgcDrdjxw4OhyPOvZ4LXpi8DUGQ2MsPACgWzz+HIAjy9PSkUqlsNltDQ0M85woMDAwMDORwOBgMZua+0r8zbxF7btBo9JzqGQBQMpYvX\/4yxycEQS9ceZ7t00upXBEAgJzj6Og41138IWkYhrlc7tDQUFtbm8SXT4aHh8fHxx8+fAi2AQAAJM7AwMD4+LjYqf6HpPl8fnt7OxLmKfHlk7t373K53OPHj\/\/J0QcAAF6fysrKiYmJgYEB5PAPSSOzYk1NTTMzM4kHb3R0dGAwGCKRqK+vL9mWAQBAe3s7Go0WT7n\/kDQWi7WwsLC1tf3iiy8kXiH0\/fff7+vr++CDD6ytrSXbMgAAIBAILS0tYtea8ocoAQDzCiBpAECpAJIGAJQKyUi6srKyvr5eIk0BAIDXQQKSHhsb27Vr17lz516\/qfmMSCQSCASzSjuXCDAMi5c0ZQIMwwKBQCAQgLAFiSCB6LG6urqRkZF33nnn9Zuat7S1tSUnJxsYGAwPD1taWm7ZskVqGSlMJjM7O3v\/\/v0yyYHp7e09duwYgUDgcDiGhoZbt24F25u+JhKQNIPBCAsLs7e3f\/2m5idcLnfjxo2hoaHvv\/8+i8Xy8vLS1dWNioqSTu8DAwPt7e0wDEtf0jwe7\/3338fhcMnJyUKh0MfHh8vlfvLJJ8qRYCcrXnfgzeFwWlpaNm3aNB9S9ueIqqqqhoYGW1tbPB6vq6u7dOnSCxcucDgcWds157S3t5eUlNjY2KioqKipqdnZ2V29epXFYsnaLsVmpk9pGIY7Ozuzs7NxONxbb72loaHR1dWVmZn59ttvJyQkWFlZzamVcwSPx+vq6nrZTBKCIENDQx0dnbk2o62tjc\/nIwNOJAyoo6NjampK6RNInzx5MjIyIh5pa2ho9PX1sVisBQsWyNYwhWamkh4dHU1OTg4ODn7zzTft7e29vLyOHz\/+3\/\/+97333kMKUCsiXV1d0dHRbDb7ha9isdj9+\/fHxMTMtRmjo6MikUhPTw85hCBoenpati4r6TA5OTk9PS0u1oHU2ZthhS3Ay5ippCcmJgIDA6urq3V0dMzMzMbHx+\/cuePl5SX\/1fxeAYlEqqurk7UVKHV1dTQaLd5lAoZhLBY7R\/NJkUhUXFx8584d8Zn29vbm5uZvv\/1W3KO6uvq7774r8bjg51FRUcHhcM++cQwGI51v1Pj4+OnTp3k83gtfRaPRK1ascHd3l4IlEmemkjY1NV24cOHevXu9vb2JRGJ3d3dLS0tUVJRCS1pOsLS0xOFwyORZJBJNTU0tWbJEVVV1jrrj8\/nPblIzPj4+PT09NDT0rDdEOutJxsbGOjo6U1NTyOHk5KShoaF0cntEIhGbzX5ZgT40Gv1sXV7FYhYeb6FQyGQyN2zYgMfjGxsb2Wy2q6vr3Fk2f\/Dy8rK2tm5paQkLCxsZGWlvbz9w4MAcTaTRaDRS\/kZ85saNG7\/88ss333wjfQenjY0NlUptbW0VCoU8Hu\/evXt0On3hwoVS6FpHR2f\/\/v1S6Ej6zELSGAzGzs5uaGjo\/v37p0+f1tXVlWxV0HmLurp6SkrK6dOnExMT+\/v7t2zZEhsbOx8WcggEwtdff52UlPTNN99MTU2tWrUqISEBLJ28JrOQNJ\/PT05Obmtru3fvXltbm6+v7zzZDkIKuLq6Ll++fHh4WE1NbV7FWlhZWR09ehTZimCGez4BXs1MJc3n8z\/55JPGxsa8vLzs7Gwej\/fPf\/5zTi2bb2AwGOWrYj0TIAgCtTEkyEwljcFgkPiwlJSUe\/fuXb16VQqF0QBSQF9f38LCQtZWACTGTCWNRqPj4+MRT+mWLVvmzh8LkDKOjo5kMhnMYJWG2bnH5ufIULnBYDBKH6Y2r\/hf0V82m\/3kyZPKykqJ7zP29OnT4eHh+vr6wcFBybYMAAA6OztZLJY4LfcP9fJ4PKTo7\/DwsMTHYE1NTdPT0ykpKWBrDgBA4tTW1k5MTIh3a\/9D0jgcztjYWF9fPzAwUOJPaQ6HMz4+7u3tLZ0oAgBgXjE9Pc1iscSrBv+r400kEslk8pYtWyQe3PvgwYO+vr7o6GhQ9BcAkDh9fX2tra1ij\/X\/90CGIAiNRkt84A1B0By1DAAA\/hRoCDQGACgVMpY0qCAHAEgWGUu6qKios7NTtjYAAMqEjPeXvn37tkgkMjc3l60ZAIDSIKdbxgsEgo6OjsHBQW1tbRKJRCAQUCgUDMMDAwOdnZ0qKiokEglsbavowDD89OnT\/v5+PB6\/dOlSEGUsEeRR0shm1IWFhRMTE4ODg9bW1p999pm9vX12dnZOTg6FQlFXV8\/JyXnnnXdMTExkbSzg75OWllZXV+fk5HT9+vXR0dHjx4+bmprK2iiFR9qSFolEExMTYq8Yl8udnJwcGxtDDtFotKamZnFxMRqN\/vXXXwkEQmZm5o4dO+Li4sLDwwcHBw8fPozEqzQ3N2dnZ2\/fvl3K9gMkBQzDX3zxxeLFiw8cOKCpqRkaGurh4fHJJ5\/I2i6FR9qSHhgY+OCDD8RFOdva2oqLi8+ePYscEonEn376aXBwMDo6GkmIX7dunbq6+j\/+8Y9z587l5+eL48\/IZPK1a9ekbDxAgkAQtGHDBgKBoKKi8vTpUxQKRSKRZG2UMiBtSRsZGZ0\/f158+OWXX1Kp1JUrV4rPIBEp09PT4jPu7u62trY1NTW7d+9OT09HVM3lcsVl6AAKyscff9zR0XHixImUlJTDhw+Hh4fL2iJlQAaLWJhnQAT87BkUCmVra5udnc1isQQCQUNDQ0JCwoYNGw4ePNjQ0BAREZGfn19eXv7111+D8FJFB4IgIpGIlDe8dOnSnTt3QJzC6yOP7jEKhTI6Onr48GE2m43BYOLj4z09PUUikaOjY0pKyldffaWnpxcSErJ27VpZWwr4+0xOTlZXV1tZWVlZWSUkJBw5cmT\/\/v0ZGRlS2N5EuZGxpJHw7z+dRKPRPj4+K1as4HA46urq4gsCAgICAgI4HA4ej5d4uhhA4giFQg6HA0HQC5Nqb9++HRkZuX379sOHDyMVFFks1rMTrj8xPT09NTWloaEBbv2rkfGnExgY+LKFKDQa\/cKvwrMlONhs9sTEhJGR0XwokasowDDM5\/Obmpqqq6s5HE5sbOwL7+OiRYsMDQ3t7OwEAkF+fj4ajY6JiTEwMHhZm5mZmTdu3HB3dw8NDSUSieCOvwwZS9rNze1v\/y+fzz916lRpaamfn194eDhY0pQ5Y2NjDQ0Nd+7cYTKZY2NjFhYWe\/fuNTIyeuHFdnZ2eXl5GRkZn3322eTk5LVr10JCQl6xeQuRSOTxeLm5uYWFhZ6enqGhoRYWFkDYz6PAYxgsFuvs7NzU1FRYWFhbW+vv7x8cHAyqo0mf0dFRJpNZVVXV2to6Pj6O7FOH6HnRokWv+EdbW1symczn8\/9yKywIgry8vKysrG7evFlWVlZUVFRZWenm5hYUFGRlZQV2cXoWBZY0cpstLCzy8vJu37599erVioqKsLAwT09PUORdmgwNDZ04ceLZNUVjY+MPP\/yQSCT+5f9CEDTDkhtoNNrIyCg2Ntbf37+4uLikpKS4uLiuru6NN94ICAhYtmyZFPblUwgUWNIoFAqCoEWLFm3atMnT0zMrK4vJZJ48ebKsrCwsLOyNN94Am4FIAaFQKBKJCASCWNLGxsYJCQnGxsZz0R0GgzE2Nl6\/fr2\/v\/+tW7du3bpVXl5eW1trb28fHh5uYWGBpAPMZxRb0ggYDMbW1tba2rq2tvbXX39tbm5ua2vz9PRct26dsbExKKUyd4yNjeXk5OTn5yPLjUKhENGzlZXVnPYLQdDChQtjYmJWrlxZVlZ2\/fr1mpqa+vp6JyenkJAQMpmMw+Hm1AB5ZhaS5nA4mZmZJiYmVCoVi8VOTk7W1tZ6e3vLiYsCi8W6u7u7uLgwGIzs7Ozi4uKamprAwMDIyEhtbW1ZW6dswDBcUVFx6dKlnp4eAoGwZs0aNTW14uLiPXv2LF26VGpmGBgYRERErFy5sri4OCcnp6qqqra2lkwmr1692tXVVU6+mVJmppKenJz8+uuvqVRqVFRUVlaWu7v70aNHjx079vDhQ7maw2AwmJCQEE9Pz7y8vMLCwszMTGQc7ufnB5IxJQIMw93d3RcuXKivr4dh2M3NLSYmxtzcnMfj0Wg0PT096ZuEZH34+fmVlpYWFBQ0NjY2NzeTSKQ333zT2dl5vg3FZyrp\/v5+W1vbnp4eCIJ0dHQmJyfLysqWL18uh8NaCIJ0dXXXr1\/v4+OTmZlZUVFx\/vx5RNguLi7z7QZLlrGxsdLS0szMTBaLZWxsHBYW5uPjg0QKEAgEGX62EASpq6sHBQV5eHjU1NQUFhY+ePDgxx9\/JJFIdDrd0dFx\/tSQn6mklyxZQiQSIyIiXF1dzczMBgcHW1pa3n33XbldP8BgMKamptu2bfP29s7IyGhtbU1KSqJQKGvXrrW2tpZbs+UWPp\/f2NiYnp7e0tKioqKyatWqyMhIY2NjuRrcIs+bgIAAd3f3+vr63Nzc33\/\/\/ccff7SwsAgICHB1ddXU1JQrg+eCWWxzB0FQSUnJgQMH1NTUOjo6+vv7PTw85PwDwmKxDg4O1tbWlZWVV69evXv3blNTk5+f3+rVq42MjORwiCGHwDA8Ojp6+fLlkpISHo9HIpGioqKcnZ3l+dPT0tLy9fV1dXW9c+dOXl5eR0dHUlKStbV1SEiIs7Pzs1HGysfsPN6qqqpaWlpcLjctLU1VVdXJyWmOzJIsBAKBRqO5urrevHkzLS0tLy+voqIiODg4NDR0\/ozH\/h58Pr+iouKXX35hsVhaWlrr168PDAxUlIpCampqPj4+VCq1trY2JyensbGxra1t6dKloaGhK1askCsfkASZhaRVVFQyMzMZDMYPP\/xQUFBApVIVy+Gkrq6OzP3S0tKKioouX75cVFS0Zs0aGo2mrHf3NWlpafnll19aWlpQKJSPj8+GDRsMDQ0V7vmGw+E8PDzc3NyYTGZ2dvb9+\/eTkpIuX76MeNSULyppppIWCoXfffddQ0NDSkpKeXl5cnLypk2b5tSyuQDxnG3atMnX1zczM7O2tvbkyZMlJSWRkZEODg7zeTHzTwwNDSHR1OPj42ZmZtHR0S4uLgoduoNGo52cnMhkcnNzM4PBaGhoOH\/+fEFBQWBgoKen58vSRRSRmUoahuGxsTFtbe2SkpILFy58\/vnnwcHBc2rZ3IHFYq2trXft2sVkMq9cudLc3NzR0UGlUkNCQszNzee552x6erq+vj41NbW7u1tLSysiIoJOpy9YsEDWdkkGAoGACLu9vR0Zip87d66wsHDlypUeHh6KOAZ5nplKGovF7tu3D1mKTExMfFl6jQJBIBDc3d0pFEphYWFubu6tW7fq6upWrVpFp9P19PSU4NbOFpFI1Nvbe\/Xq1dLSUqFQ6OjoGB0dbWVlJc9usL8HgUCwt7cnk8n379\/Pz89vaGg4c+YMg8Hw8\/Pz8\/PT09NT6Lc8i7m0qqqqp6fn3JkiE5AJtoeHR3Z2dkFBQXp6ellZWVRUlLe3t0KPM2fL9PR0bm5udnb2yMiIrq5uTEyMn5+fcn8CWCzW0dHRwcGhtbU1Ly+vsrLy4sWLBQUFvr6+wcHB4r1dFQ5liPF+fRYsWLB582Y6nZ6amlpeXn706FEGgxEVFeXi4qL0NTRgGG5sbDx16tSjR4\/weHxwcPD69evnT7UgNBpNJpNtbGy6u7vT09OrqqrS0tKuX79Oo9HodLq8LbzPBCX\/vs4KY2PjnTt3+vv7Z2RkNDc3JyYmUiiUiIgIOzs7hbuvM6Svry8rK6uoqIjL5VIolOjoaBsbG6X\/FXseCILMzMx27tz55ptvXr9+vbq6GpmLeXl5BQYGmpubK9BQfN7dvFeDx+MdHR0tLS0rKiry8vLq6upaW1tXrFgREhJiYmKiQPf1L5mamqqoqLh27Vp3d7eenl5cXJyPj888z2\/B4XCWlpbbt28PDg4uKCiora29ceNGdXW1q6urv78\/iURSiB87BTBR+mhoaAQEBDg6Ov72228MBoPBYNTV1QUGBiK+E0V\/YotEoq6ursuXL9fW1mIwGCqVum7dOrDToBgcDmdlZWVpadnZ2Zmfn19dXV1QUFBRUbF8+fKwsDAzMzM5X+wEkn4phoaG0dHRXl5eGRkZ5eXlFy9eLC0tDQsL8\/X1VYhf6xfC4XAYDMa1a9fYbLapqem6des8PDzk\/DsqEyAIsrCw2LZtW3Bw8I0bN27fvl1SUlJTU0OlUul0ujwvdirqV1M6QBBkYmKye\/fuoKCgjIyM2trapKSkmzdvxsbGUigUxRqHwzBcV1d36dKljo4OVVXV9evXr169Gqm2C3gZEASZm5u\/99570dHReXl5+fn5hYWFJSUlzs7O4eHhNjY2sjbwBQBJz4hly5Z9+OGHDQ0NSGjKwYMHXVxcwsPDraysFGIc\/uTJE2SswefznZ2dN27caGZmplg\/SbJFV1c3Li4uKCgoPz+\/rKysqqoKKXtGp9MpFIpcDXOApGcKHo93cXGxsbEpLS3NycmprKxsbm5etWpVUFCQPIcTIpntaWlpQ0NDJiYmERERnp6eipJ3IVdAEGRgYBAbGxsQEFBRUVFYWFhTU3P\/\/n07Ozs6nW5raysnqfhA0rNDQ0ODTqc7OTnduHGjqKgIWclE0sjlLYlFIBA8ePAgPT2dyWSqqKjQ6fTQ0FBFXGiVK9Bo9IIFC8LCwry8vEpKSgoLC+\/evdvY2EgmkxFhP7t1hEwAkv47GBkZbdy40dPTMycnBwlNsbOzW7NmjZ2dHTIGg2FYtsoZGRnJysq6efMmh8NZsmRJfHy8ra2t3Hp0FA7kiY2k8VVVVV2\/fp3JZDY0NNjZ2YWGhlIoFFVV1d7eXgKBoKurK2XbgKT\/JhAEkUikXbt2rVy5MjU19f79+83Nza6uruvXr1+8eHF5efmiRYtksjIkEomqqqrOnz\/f29urpaW1YcMGOp0uJ2NC5UNPT49Op9NotIqKiqtXrzKZTCaTuWzZsqCgICaT2dXVlZCQYGZmJk2TgKRfCzQaTaFQvvzyy\/LycqTOGbLvR3l5uZqa2u7du8lkstSMgWH48ePHyK6uGAyGRqNFR0eD7aOkgKqqqr+\/v7e3d2VlZU5OTnt7e3t7OwzDMAzv37\/\/nXfeWbFihdTuApC0BMDhcD4+Pg4ODsXFxfn5+QwGA4VCjY+PHzlyZPPmzVQqVQo2jIyMMBiMGzdujI6Ompubx8TEODo6KnfehbyBw+G8vb2dnJzq6+vPnDkzPDyMQqGGh4dPnjw5ODgYEhIindsBJC0ZkOIK4eHhJiYmBw8eRE4ODg7+\/PPPGAxmtjWleTweh8NhsVi3bt2i0+kv29wTgc\/n3717Ny0traOjQ1NTMzIycvXq1TIpvgtAoVAaGhqLFy8WiUTiM2w2+9KlS729vW+\/\/bYUAgGApCWJSCRqb29XV1fncrlCoRCFQo2Ojh49enTr1q1UKnXm3ilkGP\/48eNbt25ZW1u\/TNIikYjFYmVkZBQXF4tEIgcHh6ioKDKZDEbaskVTUzM2Nrajo6OtrW14eHh6eprH4xUUFIyOjm7ZsmWuCy0ASUsSDAYTExPj6enZ0tLS1NR07969sbGx8fHxY8eO8fl8Go02w3tJo9FoNNrx48eLiopedg2fzy8sLLxy5crAwICOjk5cXJyvry8YacsDenp6QUFBKBQKhuGhoaHu7u7Hjx93dHS0t7d\/9dVXu3fvnlO\/KZC0hMFgMEuWLFmyZElwcLBQKHz8+HF9fX1jY+PFixfHxsZWr14tkfjwlpaWM2fOtLW14fH4gICAjRs3Kl9ZPCUAWesyMDBwdHREzoyPjw8ODgoEgrlLEwCSnkMwGIyFhYWFhcXq1asnJye7u7tHRkZefwfsiYmJQ4cOjY2NkcnkmJgYOzs7xU0jmW9oaWnN9Y8v+CpIAxUVFRUVFbHL6sSJEw8ePHj+MjQaHRcXJ\/5Ffxmqqqo+Pj5aWlr+\/v7ADaZkVFVVpaamPn361NzcPCwszN3dHYvFPnr0KDc3t6enR19f39vb29nZ+RV+GSBpGUCj0ZydnV\/40uLFi\/\/y3zEYjCJWXAb8JUwm8+eff161ahWPx0tOTj516tS+ffvc3d1\/+umnwMDALVu2iESia9eu4XC4V+yKASQtA5YtWyZrEwDSRiQSZWVl9fb2Pv8SGo0ODAxcvHhxQUHBf\/7zH2NjYxQKFRQUFBcXt2\/fPhsbm6SkJC8vL+TirVu3JicnA0krGO3t7RkZGdXV1SgU6sKFC7dv305ISADpU4qOpqYml8t9\/jwEQXg8HoZhPT098UyKSCT++uuvFArl0aNHSNQKgra29gsbEQMkLY+Ym5tv3759+\/bt4jMgSFvRQaOeVD0AAAFSSURBVKPRK1eufMUFMAwLBIKenh4SiYRCoYRCYUZGhpub271797Zt28bn8yMjIyEIKiwsfHVBYiBpeQSHw82fsrsABAiC1qxZc+zYMSsrKxUVlbKyMjwef\/bs2dbW1v379+\/cufP06dOIw\/zAgQOvaAdIGgCQFwwNDXfu3FlbWzs2NrZhwwZ7e3s8Hk+lUtPT0xsbG7u7uxcsWODk5PTqZQ4gaQBAjtDX1w8MDPzTSV1d3RUrVsywBVB9CgBQKv54SotEov7+fqFQePbsWYmHItXX1w8PD6enpxOJRMm2DAAA6uvrR0ZG+Hw+cvg\/SbNYrLGxsZycHIkXjmxtbWWz2QUFBcDlAwBInI6Ojunp6enpaeQQgmEYhULxeDxkYyQNDQ2Jdzk0NMRisSwtLUHtKwBA4nA4HDQaTaPRkGTsPyQNAACUA+AeAwCUCiBpAECp+H9L2Ual5IaO9gAAAABJRU5ErkJggg==\" y=\"1.5\"><\/image> <\/g> <\/svg><\/span><\/p><p>Giá tr\u1ecb c\u1ef1c \u0111\u1ea1i c\u1ee7a hàm s\u1ed1 \u0111ã cho b\u1eb1ng <\/p>","options":["A. 3","B. 2","C. -1","D. -2"],"correct":"1","answer":"<p>\u0110áp án \u0111úng là : <span style=\"color:#27ae60;\"><strong>A. 3<\/strong><\/span><\/p>","type":"choose","user_id":"156","test":"1","date":"2025-05-29 15:11:47"},{"id":"4134","test_id":"497","question":"<p>N\u1ebfu <span class=\"math-tex\">$\\int\\limits_{-2}^1f(x)dx=6$<\/span> thì <span class=\"math-tex\">$\\int\\limits_{-2}^1[2+f(x)]dx $<\/span> b\u1eb1ng <\/p>","options":["A. 6","B. 0","C. 10","D. 12"],"correct":"4","answer":"<p>\u0110áp án \u0111úng là : <span style=\"color:#27ae60;\"><strong>D. 12<\/strong><\/span><\/p><p>Ta có <span class=\"math-tex\">$\\int\\limits_{-2}^1[2+f(x)]dx =\\int\\limits_{-2}^12dx + \\int\\limits_{-2}^1f(x)dx =6+6=12$<\/span>. <\/p>","type":"choose","user_id":"156","test":"1","date":"2025-05-29 15:16:10"}]}